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The factorization of a large digit integer in polynomial time is a challenging computational task
to decipher. The exponential growth of computation can be alleviated if the factorization problem
is changed to an optimization problem with the quantum computation process with the generalized
Grover’s algorithm and a suitable analytic algebra. In this article, the generalized Grover’s protocol
is used to amplify the amplitude of the required states and, in turn, help in the execution of the
quantum factorization of tetra and penta primes as a proof of concept for distinct integers, including
875, 1269636549803, and 4375 using 3 and 4 qubits of IBMQ Perth (7-qubit processor). The fidelity
of quantum factorization with the IBMQ Perth qubits was near unity.

I. INTRODUCTION

Computation problems are often classified by the dif-
ficulty of getting their solutions. The concept of diffi-
culty is explained by the theory of computational com-
plexity [1], which specifies the time required to perform a
problem using a specific approach. It is well known that
cryptography technology utilizes the difficulty of factoriz-
ing large numbers to secure data storage and information
transmission [2]. If the factorization is a polynomial-time
problem, the security system is not secure. In order to
factorize an n-bit integer on a quantum computer, Shor
presented a polynomial-time approach in 1994 [3]. Later,
the procedure is put into practice by factorizing the num-
bers N = 15 and N = 21 [4] and N = 15 [5]. The
only shortcoming of implementing Shor’s algorithm is
the need for robust error correction schemes and noise-
free qubits [4–6]. More specifically, a high number of
qubits are needed to factorize an integer without know-
ing the solution beforehand. For instance, using Shor’s
algorithm without knowing the solution, factorizing the
number 15 would require at least 8 qubits (and more for
error correction) [7].

Many alternative methods [8] have been developed to
overcome the disadvantage of implementing Shor’s algo-
rithm. The adiabatic quantum computation [9] method,
which transforms the factorization problem into an op-
timization problem [10], is one of these techniques. The
factorization target number’s binary system multiplica-
tion table is expressed in variable form. Using the re-
duction technique, the problem is reduced to a list of
equations [7]. A complex Hamiltonian is expressed us-
ing those equations. The ground states of the Hamil-
tonian carry the solutions (zero eigenvalue states). The
use of quantum annealing methods and computational
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TABLE I: Quantum Factorization Methods

Largest number Protocol used No. of qubits
21 [5] Shor’s algorithm 10
21 [9] Quantum adiabatic 3

algorithm
1829 [17] Quantum variational 9

imaginary time
evolution

1005973 [18] Quantum Annealing 89
4088459 [19] Minimization 2

algebraic geometry to factorize the bi-primes was also
suggested by Dridi and Alghassi in their 2017 paper [12].
The theoretical and experimental quantum factorization
have been reported utilizing Shor’s algorithm [4, 5, 13],
adiabatic quantum computation [7, 9, 11, 14–16], and
quantum annealing principles [12]. The final number of
variables in the equation, calculated using the minimiza-
tion strategy for a certain integer, determines the total
amount of qubits required for the experimental quantum
factorization. The largest integers factorized using dif-
ferent algorithms are listed in Table I.

This article utilizes the minimization method [14, 19]
for pre-processing, like the adiabatic approach [11]. After
applying the minimization method, the Hamiltonian is
written down using the final equations. A unitary opera-
tor is then defined as the exponential function of the said
Hamiltonian. The unitary operator marks the Hamilto-
nian’s ground states (states with zero eigenvalues). The
states obtained after the application of the Hamiltonian
unitary operator will be referred to as marked states
in this article. To distinguish the marked states from
the unmarked states, the generalized Grover’s method
[20, 21] was used to amplify the marked states. The
initial state (uniform superposition of qubit system) pro-
gresses to the target state (marked states) by repeated
application of the oracle and diffuser operator. The
multiple target states’ amplitudes are increased by the
generalized Grover’s technique. The quantum factoriza-
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tion protocol was utilized for the quantum computation
experiment to factorize the integers, including 875 and
1269636549803 using 3-qubit systems and 4375 using 4-
qubit system on IBM’s quantum processor ibmq perth
(7-qubit) for the proof-of-concept. The following sec-
tions describe the quantum factorization protocol and
the properties of the factors of integers used in detail.

II. BACKGROUND

A. RSA and Quantum factorization

When factoring an integer, the needed time order is
O(bk) with the k-th order of b-bit number, indicating
that the factorization takes a polynomial amount of time.
Equally challenging as the factorization problem is figur-
ing out how many prime factors there are in an integer.
There are no effective number-theoretic functions to de-
termine the number of prime factors of an integer in num-
ber theory [22]. The sieve theory, for instance, calculates
the approximate number of prime factors in an integer.
The inability of sieve theory to distinguish between num-
bers having an odd or even number of prime elements is
known as the parity problem. A lot of cryptographic pro-
tocols benefit from the factorization problem’s complex-
ity. Often employed in cryptography, the RSA [23] relies
on the challenge of factoring a big bi-prime integer in
polynomial time to secure data transmission. With the
RSA protocol, a public key is made available based on a
massive bi-prime number. The decryption key, or private
key, is different from the public key [24]. The two prime
elements of the employed bi-prime number are kept a se-
cret. Huge bi-prime numbers are used to make the RSA
encryption unbreakable. The steps involved in RSA en-
cryption and decryption [25, 26] are listed below.

• Choose two unique prime numbers. Calculate their
product (n).

• Carmichael’s totient function (λ(n)) is evaluated
using the least common multiple to fix the range of
e between 1 and λ(n).

• Using e and modular multiplicative inverse, the en-
cryption and decryption functions are defined for
the public and private keys, respectively.

Shor’s approach, which is implemented on a quantum
computer, can be used to find an integer’s prime fac-
tors [3]. Shor demonstrates how RSA encryption may
be broken using a quantum computer approach to factor
huge integers in polynomial time. Based on the com-
plexity of the factorization issue, it enables a quantum
computer to decrypt the public key. This demands new
cryptographies that provide security against the capabil-
ity of quantum algorithms [27]. Therefore, the quantum
cryptography field has been intensively studied for secure
data transmission [28, 29].

B. Existing Methods

Burges introduced the quantum adiabatic theorem in
2001 [10]. In the quantum adiabatic method, a Hamilto-
nian is constructed from the multiplication table of the
integer to be factorized. By reducing the number of vari-
ables in the problem, this strategy is effective for inte-
gers with unique features [7, 14]. Because the minimiz-
ing method makes the factorization model more complex,
it cannot be used in all cases. This prompted a search for
a more inclusive prime factorization procedure. On the
basis of the quantum annealing principle, certain gen-
eralized models have been put out; however, they are
still constrained by the hardware capabilities of quan-
tum machines [12, 30]. A new prime factorization model
that uses less quantum annealing and fewer qubits was
proposed by Wang, B. et al. in 2020.

This article implements the quantum factorization pro-
tocol for factorizing tetra and penta prime numbers.
The protocol includes a pre-processing part and a quan-
tum computation part and overcomes the shortcoming
of Shor’s algorithm. The pre-processing part changes
the factorization problem into an optimization problem.
The prime factors of the integer are expressed in binary
form. Then the binary product of the prime factors is
evaluated. A set of equations are obtained from the bi-
nary product. The number of variables present in these
equations is reduced using binary arithmetic rules. This
simplification is called minimization [11, 14, 19]. After
obtaining the final set of equations, the bit variables are
mapped with the quantum operators. This mapping of
variables to operators is defined so that the Hamiltonian
encodes the solutions (required bit values) as its ground
states (states with eigenvalue as zero). The zero eigen-
value states of the Hamiltonian are then marked by a
conditional phase shift carried out by the unitary oper-
ator defined using the Hamiltonian. The marked states
become more pronounced using the generalized Grover’s
algorithm. The factorization problem is shown schemat-
ically in Fig. 1. A few integers are factorized as a confir-
mation for the quantum computation experiment. The
tetra prime integers 875 and 1269636549803 consist of
four prime factors. The penta prime integer 4375 consists
of five prime factors. The experimental results’ fidelity
[32] was examined with the help of quantum state tomog-
raphy [34]. The following sections include the quantum
computation experiment of prime factorization based on
the protocol.

III. METHODOLOGY

The following general procedure is applied for the fac-
torization problem. Let N denote an odd composite in-
teger with α number of prime factors. Each prime fac-
tor of N is represented as ni, where i=1, 2, . . ., α
(α ∈ N). The prime factors are written in binary form,
and the binary product is evaluated in the form of vari-
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FIG. 1: Schematic diagram of Factorization
Protocol The protocol begins with the optimization

part. The integer’s prime factors are expressed in
binary form, and their product is evaluated to form

equations. Using the minimization strategy, the
equations’ variable count is decreased. The final set of

equations obtained is used to write down the
Hamiltonian (Ĥ). The operator is defined by this
Hamiltonian. The superposition state is initially

produced on the qubits using the Hadamard gate.
Then, the operator described using the Hamiltonian
marks the Hamiltonian’s ground states (states with

eigenvalue zero) by applying a phase shift to the states.
To boost the amplitude of the marked states, the

operator Û(θ) is defined using the generalized Grover’s
search technique. Finally, the measurements are

recorded for the different computational basis to obtain
the experimental density matrix.

ables. Then the set of equations are given by the binary
product (n1)bin×(n2)bin. . . .(nα)bin = Nbin where (ni)bin
indicates integer ni in binary system (or representation
as a binary number) [7, 10, 11, 14, 15]. The equations
are optimized by reducing the number of variables with
the arithmetic of binary numbers, called the minimiza-
tion method. The prime factors nα of the N satisfy the
property that all the prime factors have an equal number
of digits in their binary form (number of digits in (nα)bin
is same for all α). And

(n1)bin = (n2)bin = .... = (nα−1)bin 6= (nα)bin (1)

The case for α = 2 is worked out to understand the
optimization part more clearly. Let N=35 and n1 and
n2 be the prime factors of N . The number of digits
in (n1)bin=(n2)bin=3, and (n1)bin ≡ (1b11), (n2)bin ≡
(1c11).

From Fig. 2, the equations obtained after adding each
column are as follows:

FIG. 2: Multiplication table for α=2 case, N=35.

b1 + c1 = 1 + 2z11 (2)

2 + b1c1 + z11 = 0 + 2z12 + 4z21

b1 + c1 + z12 = 0 + 2z13 + 4z22

1 + z13 + z21 = 0 + 2z14

z14 + z22 = 1

These equations are further simplified with binary
number arithmetic to obtain:

z11 = 0 (3)

z12 = 1

z21 = 0

z13 = 1

z22 = 0

z14 = 1

Therefore, the equation used to formalize the Hamil-
tonian for N=35 is an equation in one variable, q1. The
minimization method reduced the N=35 factorization
problem to a single variable problem.

b1 + c1 = 1 (4)

b1c1 = 0

=⇒ c1 − c21 = 0

The set of equations obtained after evaluating the bi-
nary product ((n1)bin×(n2)bin) in Eq. 2 have 8 variables.
The minimization method reduces the number of vari-
ables, as seen in Eq. 4. The minimization method uses
arithmetic of binary numbers (Eq. 3) where each binary
digit takes the value of either 0 or 1. The final equation
is used to write down the Hamiltonian. In this article,
the quantum factorization procedure is carried out for
the odd composite number with α = 4, and 5 that sat-
isfies the mentioned property (Eq. 1 and the number of
digits in binary form are the same for all prime factors).
The details for the quantum computation part and the
results of tetra and penta prime quantum factorization
are explained.
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IV. RESULTS

A. Quantum factorization of tetra prime number

The binary representations of the prime factors p, q,
r, and s of N=875 are (1p11), (1q11), (1r11), and (1s11),
respectively.

The set of equations found from the binary product
(Fig. 3) followed by minimization are:

p1 + q1 + r1 + s1 = 1

p1q1 + q1r1 + p1r1 + s1p1 + s1q1 + s1r1 = 0

p1q1r1 + p1r1s1 + p1q1s1 + q1r1s1 = 0 (5)

which are reduced to a single equation with three vari-
ables:

−p1 − q1 − r1 + 2p21 + 2q21 + 2r21 − p31 − q31 − r31
+4p1r1 + 4p1q1 + 4q1r1 − 3p21q1 − 3p21r1 − 3q21p1

−3q21r1 − 3r21p1 − 3r21q1 − 5p1q1r1 = 0 (6)

After multiplying Eq. 6 with −1 on both sides,
the variables (p1, q1, r1) are mapped with the opera-

tors (â1, â2, â3) where âi =
I−σiz

2 , I is the 1-qubit

identity operator, and the σiz operator in the quan-
tum circuit acting on the ith qubit is the Pauli Z
operator. This mapping transforms the Hamiltonian
from a variable equation to a diagonal matrix form
with non-negative number entries. The ground states
of Hamiltonian encode the solutions. For example, if
H |qu1〉 |qu2〉 |qu3〉=0 |qu1〉 |qu2〉 |qu3〉 then b1=p1, b2=q1,
and b3=r1 are the required bit values. For example, from
Eq. 9 it is observed that the Hamiltonian for N=875 has
ground states (states with zero eigenvalue) |000〉, |001〉,
|010〉, and |100〉. Operator âi also satisfies the property
âi

2=âi. As a result, the following is the Hamiltonian for
the factorization problem:

Ĥ = 5â1â2â3 + 2â1â2 + 2â1â3 + 2â2â3 (7)

The âi operators are substituted in the above Hamil-
tonian to obtain:

Ĥ =
17

8
(I3)− 13

8
(σ1
z ⊗ I ⊗ I + I ⊗ σ2

z ⊗ I + I ⊗ I ⊗ σ3
z)

+
9

8
(σ1
z ⊗ σ2

z ⊗ I + σ1
z ⊗ I ⊗ σ3

z + I ⊗ σ2
z ⊗ σ3

z)

−5

8
(σ1
z ⊗ σ2

z ⊗ σ3
z) (8)

TABLE II: For N=875. The phase shift relative to the

state |000〉 when the operator e−iĤθ is applied to the
z-basis states.

Quantum Relative Quantum Relative
State Phase shift State Phase shift
|000〉 0 |100〉 0
|001〉 0 |101〉 −2θ
|010〉 0 |110〉 −2θ
|011〉 −2θ |111〉 −11θ

Ĥ =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 11


(9)

where I3 is the 3-qubit identity operator. The Hamil-
tonian’s ground state (|qu1qu2qu3〉) are the solutions for
the binary digits (p1=qu1, q1=qu2, and r1=qu3). Since

Ĥ is a diagonal matrix, the operator e−iĤθ can be ex-

pressed as a diagonal matrix too. The e−iĤθ operator
applies a conditional phase shift (relative to |000〉 state)
to the initial superposition state as shown in Table II.
The initial uniform superposition state |ψ0〉= 1

2
√
2
Σi=7
i=0 |i〉

is obtained by applying Hadamard gate H⊗3 to the
|000〉 state. The ground states of Hamiltonian are called

marked states after applying the e−iĤθ operator. For
the purpose of differentiating the marked states from the
unmarked ones, the amplitudes of the marked states are
enhanced. The amplification procedure is carried out
by an exact search method. This is accomplished by
using an oracle Û(θ) that was obtained using the gen-
eralized Grover’s search technique [20]. The way the
search algorithm operates is similar to how resonance
works. By re-expressing the state |ψ0〉, one may de-
termine the phase shift angle (θ). |ψ0〉 can be written
in terms of the normalized sum of marked states |x0〉
(|x0〉= 1√

M

∑M−1
t=0 |MSt〉, where |MSt〉 are the marked

states) and the normalized sum of remaining states |x⊥0 〉
(|x⊥0 〉= 1√

N−M
∑N−M−1
f=0 |Sf 〉, where |Sf 〉 are the remain-

ing states). The expression of |ψ0〉 in terms of |x0〉 and
|x⊥0 〉 is:

|ψ0〉 = sinφ |x0〉+ cosφ |x⊥0 〉 (10)

where the angle φ is the reflection angle of the uni-
form superposition state w.r.t. the unmarked states. The
phase shift angle θ and φ are related by the following

equation: θ=2 sin−1 (
sin π

4j+2

sinφ ), where j is the smallest

number of iterations of Grover’s protocol necessary to
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FIG. 3: Multiplication table for α=4 case, N=875.
T1=z

′
15 + z′25, T2=z14 + z22 + z′14 + z′24, T3=r1(z14 + z22) + 1 + z13 + z21 + z′13 + z′23,

T4=z14 + z22 + r1(1 + z13 + z21) + p1 + q1 + z12 + z′12 + z′22, T5=1 + z13 + z21 + r1(p1 + q1 + z12) + 2 + p1q1 + z11,
T6=p1 + q1 + z12 + r1(2 + p1q1 + z11) + p1 + q1, T7=3 + p1q1 + z11 + r1(p1 + q1), T8=p1 + q1 + r1
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FIG. 4: (a)Quantum factorization circuit, (b) Experimental density matrix (EDM), and (c)
Theoretical density matrix (TDM) The circuit, which uses 3 qubits to factorize N=875, is implemented on
IBM’s quantum processor. The experiment and simulation are performed on the ibmq perth system, a 7-qubit
processor. The final measurements are obtained in the Z-basis, forming the EDM. The EDM has a non-zero

complex part, as shown in (b)(ii). As indicated in (b) and (c), the numerical values of the real component and
imaginary component of the density matrix elements are shown separately. The fidelity of the result was found to be
0.9683 (The EDM and fidelity calculation are provided in the link [33]). The U1 gate is a 2× 2 diagonal matrix with

diagonal entries
(
1, eiφ

)
which is equivalent to the operation of e

iφ
2 Rz(φ) where Rz performs a rotation around

z-axis by an amount φ.
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maximize the amplitude of the solution states while min-
imizing the amplitude of the remaining states [20, 21].
Quantum tomography is used to examine the accuracy
of the experimental result after the quantum circuit re-
sults have been obtained. Quantum tomography uses a
sequence of measurements on several bases to capture the
complete quantum state. It provides fidelity between the
density matrices of experimental data and theoretical val-
ues for the factorization problem. The TDM is given as

ρT=|Ψ〉 〈Ψ|, where |Ψ〉=Û(θ)e−iĤθ |ψ0〉 is the final state
obtained after implementing the quantum circuit for a
given factorization problem. The EDM is given by the
Stokes parameters Sa [34, 35] and Pauli matrices σa. The
EDM is given as ρE3 = 1

NΣi,j,k(Si⊗Sj ⊗Sk)(σi⊗σj ⊗σk)

for the 3 qubit system, and ρE4 = 1
NΣi,j,k,l(Si ⊗ Sj ⊗ Sk ⊗

Sl)(σi ⊗ σj ⊗ σk ⊗ σl) for the 4 qubit system, where i, j,
k, l go from zero to three, and σa belongs to the set of
{I,σX ,σY ,σZ}. The following are the Stokes parameters:

S3 = P|0z〉 − P|1z〉

S2 = P|0y〉 − P|1y〉

S1 = P|0x〉 − P|1x〉

S0 = 1 (11)

where the probability of discovering state |i〉 in basis j
is P|ij〉. For Pauli-Z matrix (σz), the eigenvectors are |0〉
and |1〉. In the Bloch sphere, Z basis measurement gives
the probability of states |0〉 and |1〉, X basis measure-
ment gives the probability of finding states |+〉=H |0〉
and |−〉=H |1〉, where H is the Hadamard matrix, and Y
basis measurement gives the probability of finding states
|+i〉=SH |0〉 and |−i〉=SH |1〉, where SS†=I [36].

H =
1√
2

[
1 1
1 −1

]
S =

[
1 0
0 i

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
I =

[
1 0
0 1

]
(12)

The fidelity value is calculated using the ρT and ρE

matrices which tells the extent of overlap between EDM

and TDM, F (ρT , ρE)=Tr(

√√
ρT ρE

√
ρT ).

For N=875, the four solutions obtained (|p1q1r1〉) are
as expected. Four marked states are obtained from the

Hamiltonian’s ground states by applying e−iĤθ. The ex-
act search algorithm searches for the four marked solu-
tion states and amplifies their amplitude. The phase
shift angle to achieve maximum amplification is given

as θ = 2sin−1
(

sin π
4j+2

sinφ

)
where φ=π

4 and j=1 itera-

tion [20, 21]. The EDM is given in Fig. 4 (b). The

TDM for N=875 is given as ρT=|Ψ〉 〈Ψ| where |Ψ〉 =
1
2 [|000〉+ |001〉+ |010〉+ |100〉].

ρT =
1

4



1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(13)

The aforementioned conclusion is further generalized
for tetra prime numbers of the type N = p3q, where
the other prime numbers p and q differ by one binary
digit. The simplification for N=1269636549803 is pro-
vided. For N=1269636549803, there are four prime
factors are denoted as {1p9p8...p11}bin, {1q9q8...q11}bin,
{1r9r8...r11}bin, and {1s9s8...s11}bin in binary system.
From minimization, it is obtained that pi=qi=ri=si=0
for i = 3, 4, 6, 7, 8, 9, and pi = qi = ri = si = 1 for
i = 2, 5. The final set of equation for N=1269636549803
is same as Eq. (5) for p1, q1, r1, and s1. Further imple-
mentation is the same as the tetra prime quantum factor-
ization protocol. The solutions obtained from the ground
states of the Hamiltonian result in the values of prime
numbers to be p=1061, q=1061, r=1061, and s=1063,
which are the required prime factors.

B. Quantum factorization of penta prime number

Applying the quantum factorization protocol to a num-
ber with five prime factors, N=4375. The binary form of
the prime factors are expressed as {1p11}bin, {1q11}bin,
{1r11}bin, {1s11}bin, and {1t11}bin respectively. The bi-
nary multiplication table for N=4375 is provided in Fig.
5. The value of Ti (i goes from 1 to 8) variables are
the same as the ones given in Fig. 3. The remaining
expressions are given as:

T ′1 = z′′18 + z′′28
T ′2 = T1 + z′′17 + z′′27

T ′3 = s1T1 + T2 + z′′16 + z′′26
T ′4 = T1 + s1T2 + Tr3 + z′′15 + z′′25
T ′5 = T2 + s1T3 + Tr4 + z′′14 + z′′24
T ′6 = T3 + s1T4 + Tr5 + z′′13 + z′′23
T ′7 = T4 + s1T5 + Tr6 + z′′12 + z′′22
T ′8 = T5 + sr1T6 + T7 + z′′11 + z′′21

T ′9 = T6 + s1Tr7 + T8 + z′′10
T ′10 = T7 + s1T8 + 1 + z′′00

T ′11 = T8 + s1 (14)

The set of equations found after applying the mini-
mization procedure to the equations obtained from bi-
nary multiplication is given by:
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FIG. 5: Multiplication table for α=5 case, N=4375. The expressions for the variables are given in Eq. 14.
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FIG. 6: (a)Quantum factorization circuit, (b) Experimental density matrix (EDM), and (c)
Theoretical density matrix (TDM) The circuit, which uses 4 qubits to factorize N=4375, is implemented on

IBM’s quantum processor. The experiment and simulation are performed on the ibmq perth system, a 7-qubit
processor. The final measurements are obtained in the Z-basis, which gives the EDM. The EDM has a non-zero
complex part, as shown in (b)(ii). As indicated in (b) and (c), the numerical values of the real component and

imaginary component of the density matrix elements are shown separately. The fidelity of the result was found to be
0.9081. The expansion of Ĥ in Pauli basis only involves I and Z Pauli matrices. They all commute with one

another since they are diagonal matrices. Therefore, the product of particular unitary gates can be used to express
the exponential Hamiltonian function [37]. In order to get an equal superposition of states, H⊗n is applied at the

beginning. The first part of the circuit between U=H⊗n applies the exponential operator e−iĤθ. The remaining
portion of the circuit offers the |0⊗n〉 state an e−iθ phase shift before delivering the final solution state.

p1 + q1 + r1 + s1 + t1 = 1

p1q1 + q1r1 + p1r1 + s1p1 + s1q1 + s1r1 + p1t1 + q1t1

+s1t1 + r1t1 = 0

p1q1r1 + p1r1s1 + p1q1s1 + q1r1s1 + p1q1t1 + p1r1t1

+q1r1t1 + p1s1t1 + q1s1t1 + r1s1t1 = 0

p1q1r1s1 + q1r1s1t1 + p1r1s1t1 + p1q1s1t1 + p1q1r1t1 = 0

(15)

The set of equations is further simplified to a single

equation in four variables:

p1 + q1 + r1 + s1 − 3p21 − 3q21 − 3r21 − 3s21 + 3p31 + 3q31
+3r31 + 3s31 − p41 − q41 − r41 − s41 − 6p1q1 − 6r1s1 − 6p1r1

−6p1s1 − 6q1r1 − 6q1s1 + 9p21q1 + 9p21r1 + 9p21s1 + 9q21p1

+9q21r1 + 9q21s1 + 9r21p1 + 9r21q1 + 9r21s1 + 9s21p1 + 9s21q1

+9s21r1 + 18p1q1r1 + 18p1r1s1 + 18p1q1s1 + 18q1r1s1

−4p31q1 − 4p31r1 − 4p31s1 − 4q31p1 − 4q31r1 − 4q31s1

−4r31p1 − 4r31q1 − 4r31s1 − 4s31p1 − 4s31q1 − 4s31r1

−6p21q
2
1 − 6p21r

2
1 − 6p21s

2
1 − 6q21r

2
1 − 6q21s

2
1

−6r21s
2
1 − 12p1q

2
1r1 − 12p1q

2
1s1 − 12p1r

2
1q1 − 12p1r

2
1s1

−12p1s
2
1q1 − 12p1s

2
1r1 − 12q1p

2
1r1 − 12s1p

2
1r1

−12q1p
2
1s1 − 12q1r

2
1s1 − 12q1s

2
1r1 − 12s1q

2
1r1

−23p1q1r1s1 = 0 (16)

To form the Hamiltonian, 46p1q1r1s1 is added to the
left side of Eq. 16 and then the equation expression
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TABLE III: For N=4375. The phase shift relative to

the state |0000〉 when the operator e−iĤθ is applied to
the z-basis states.

Quantum Relative Quantum Relative
State Phase shift State Phase shift
|0000〉 0 |1000〉 0
|0001〉 0 |1001〉 −2θ
|0010〉 0 |1010〉 −2θ
|0011〉 −2θ |1011〉 −24θ
|0100〉 0 |1100〉 −2θ
|0101〉 −2θ |1101〉 −24θ
|0110〉 −2θ |1110〉 −24θ
|0111〉 −24θ |1111〉 −61θ

is multiplied by −1. The variables (p1, q1, r1, s1) are
mapped with the operators (â1, â2, â3, â4) to encode the
required states in the Hamiltonian:

Ĥ =−23(â1â2â3â4) + 18(â1â2â3 + â1â2â4

+â2â3â4 + â1â3â4) + 2(â1â2 + â1â3 + â2â3

+â3â4 + â1â4 + â2â4) (17)

The mapping encodes the solution in the ground states
(states with zero eigenvalues) of the Hamiltonian of the
factorization problem. Applying the definition of âi op-
erators, the Hamiltonian in Eq. 17 is given by:

Ĥ =
169

16
(I4)− 109

16
(σ1
z ⊗ I ⊗ I ⊗ I + I ⊗ σ2

z ⊗ I ⊗ I

+I ⊗ I ⊗ σ3
z ⊗ I + I ⊗ I ⊗ I ⊗ σ4

z)

+
57

16
(σ1
z ⊗ σ2

z ⊗ I ⊗ I + σ1
z ⊗ I ⊗ σ3

z ⊗ I

+I ⊗ σ2
z ⊗ σ3

z ⊗ I + σ1
z ⊗ I ⊗ I ⊗ σ4

z

+I ⊗ σ2
z ⊗ I ⊗ σ4

z + I ⊗ I ⊗ σ3
z ⊗ σ4

z)

−13

16
(σ1
z ⊗ σ2

z ⊗ σ3
z ⊗ I + σ1

z ⊗ σ2
z ⊗ I ⊗ σ4

z

+σ1
z ⊗ I ⊗ σ3

z ⊗ σ4
z + I ⊗ σ2

z ⊗ σ3
z ⊗ σ4

z)

−23

16
(σ1
z ⊗ σ2

z ⊗ σ3
z ⊗ σ4

z) (18)

where I4 is the 4-qubit identity operator.

Ĥ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61



(19)

The ground states of the above Hamiltonian (Eq.
19) give the required bit solutions. The ground

TABLE IV: The equations’ values for the two scenarios
are given. In instances 1 and 2, n1=1,

n2=n3=...=nα=0 and n1=0,
n2=n3=...=nα=1 respectively.

Equations Case 1 Case 2
n1 + n2 + ...+ nα 1 α− 1

Σi1<i2ni1ni2 0
(
α
2

)
−

(
α−1
1

)
Σi1<i2<i3ni1ni2ni3 0

(
α
3

)
−

(
α−1
2

)
. . .
. . .
. . .

Σi1<i2<...<iα−1ni1ni2 ....niα−1 0
(
α
α−1

)
−

(
α−1
α−2

)

states (|p1q1r1s1〉) are |0000〉, |0001〉, |0010〉, |0100〉,
and |1000〉, which gives factors 5, 5, 5, 5, and 7
after inputting the values of p1, q1, r1, and s1 in
Eq. 15. The phase shift angle is specified as θ =

2 sin−1
(

sin π
4j+2

sinφ

)
where φ=sin−1

(√
5
4

)
and j=2 itera-

tions for the search algorithm to function and amplify
the desired results [20, 21]. The EDM is given in
Fig. 6 (b). The TDM is given by ρT=|Ψ〉 〈Ψ|, where
|Ψ〉= 1√

5
[|0000〉+ |0001〉+ |0010〉+ |0100〉+ |1000〉].

ρT =
1

5



1 1 1 0 1 0 0 0 1 0 . . 0
1 1 1 0 1 0 0 0 1 0 . . 0
1 1 1 0 1 0 0 0 1 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
1 1 1 0 1 0 0 0 1 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
1 1 1 0 1 0 0 0 1 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0
0 0 0 0 0 0 0 0 0 0 . . 0



(20)

The quantum factorization of tetra and penta prime
numbers provides results with high fidelity and can there-
fore be extended to larger integers. A general set of
equations for the minimization part is provided for larger
numbers that share similar properties in their prime fac-
tors. For N=(n1)bin × (n2)bin. . . (nα)bin. Let (nj)1,
where j going from 1 to α, and 1 denote the binary digit
position. The binary position subscript (1) is dropped
to avoid confusion. The form of the set of equations is
shown in Table IV using the property mentioned regard-
ing the number of digits in the binary number and Eq. 1.
The final expression obtained for each case might need
some modification to achieve the proper expression for
the Hamiltonian of the factorization problem.
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V. DISCUSSION AND CONCLUSION

Many factorization problems were solved using dif-
ferent methods, including quantum annealing properties
and the adiabatic principles [7, 11, 12, 14, 15, 19]. The
exponential function of the Hamiltonian operator was
used in this article to mark the Hamiltonian’s ground
states as opposed to the quantum annealing technique
for the factorization problem. Following minimization,
the final equation is used to create the Hamiltonian op-
erator. To amplify the marked states, the generalized
Grover’s algorithm was implemented [20]. For the proof-
of-concept, these numbers 875, 1269636549803, and 4375
were factorized where the first two numbers have four
prime numbers, and the last number has five prime num-
bers that were factorized using the 7-qubit IBM quantum
processor (Perth). The processor type of Perth is Falcon
r5.11H. The Falcon family of devices is proven to be ad-
vantageous for medium-scale circuits. H represents the
segment consisting of the chip-sub sections and is de-
fined differently for each processor family. The r5.11 is
the most updated version of the processor in the Falcon
family. For N=875, the ground states of the Hamilto-
nian were found to be |000〉, |001〉, |010〉, and |100〉 that
corresponded to the prime numbers 5, 5, 5, and 7. The
fidelity of the quantum circuit for N=875 was estimated
to be 0.9683. For N=1269636549803, the set of equations
from the binary product has more variables, but the fi-

nal equation obtained after minimization is the same.
Hence, the quantum circuit for N=1269636549803 is the
same as that used for N=875. For N=4375, the ground
states of the Hamiltonian were found to be |0000〉, |0001〉,
|0010〉, |0100〉, and |1000〉 that corresponded to the prime
numbers 5, 5, 5, 5, and 7. The fidelity of the quantum
circuit for N=4375 was calculated to be 0.9081. The
two quantum circuits’ high fidelity assures the factoriza-
tion protocol’s feasibility with large prime factors and
more prime factors. These findings are particularly sig-
nificant because the online security system is predicated
on the hypothesis that factoring big numbers is an NP-
hard task. Adding further to the interest in studying and
implementing quantum computation techniques to build
more secure systems. The optimized set of equations
for larger numbers is provided at the end, bearing the
same property of prime factors as the number factorized
in this article. The number of qubits to solve a factor-
ization problem depends on the simplification. The pre-
processing part of the factorization problem (performing
the binary product of binary numbers) is done with the
help of a computer program. The other quantum factor-
ization methods require either a large number of qubits
or many iterations for evolution for implementation, but
that isn’t the case for the protocol used in this article.
This is the first experimental realization of quantum al-
gorithms to factor a number with four and five prime
factors.
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