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Abstract: The rapid advancements and the merging of hybrid quantum-classical computing, 
artificial intelligence (AI), machine learning (ML), and deep learning (DL) pose a potentially unseen 
and significant threat to encryption that may impact Post-Quantum Cryptography (PQC) transition 
timelines. There is a direct hybrid quantum-classical computing threat on cryptography, and there 
is also a direct threat AI/ML on cryptography. However, the synergistic combination of these 
technologies presents known and unknown threats that need attention, focus action, and research. 
This paper reviews Grover's Adaptive Search (GAS), which combines Grover's Algorithm with 
adaptive techniques to optimize search further, potentially making it even more efficient for 
attacking encryption. This work also examines the quantum-accelerated Harrow-Hassidim-Lloyd 
(HHL) Algorithm, designed to solve systems of linear equations exponentially faster than classical 
algorithms in certain conditions. The HHL algorithm can solve some lattice-based problems, which 
have implications for lattice-based encryption. This technological confluence and its potential 
impact on cryptography and encryption necessitate a proactive and coordinated approach to 
developing and implementing quantum-resistant AI/ML cryptographic solutions. This paper 
reviews the technological confluence and its potential implications for classical cryptography and 
PQC transition timelines and calls for further research. 

Keywords: Post-quantum cryptography (PQC); PQC transition timelines; hybrid quantum-classical 
computing; artificial intelligence; machine learning; deep learning; Grover's Adaptive Search (GAS); 
Harrow-Hassidim-Lloyd (HHL) Algorithm 

 

1. Introduction 

The convergence of quantum computing, artificial intelligence (AI), machine learning (ML), and 
deep learning (DL) forewarns a new era in computational capabilities, posing significant challenges 
to the integrity of existing encryption methods. An example includes Grover's algorithm, developed 
by Lov Grover in 1996 [1], which is a quantum algorithm that provides a significant speedup over 
classical algorithms for unstructured search problems. It's particularly relevant in attacking 
symmetric key cryptography and hash functions. Grover's Adaptive Search (GAS) [2, 3], an extension 
of Grover's original quantum search algorithm, represents a sophisticated approach to tackling 
optimization problems using quantum computing. GAS represents a powerful technique for tackling 
complex optimization problems by harnessing the strengths of Grover's algorithm and adaptive 
search methods used in AI/ML. Adaptive search methods are a class of optimization algorithms that 
dynamically adjust their search strategy based on information gathered during the search process. 
This ability could undermine the integrity and non-repudiation guaranteed by current hash 
functions. Adaptability allows for efficient exploration of complex search spaces and finding optimal 
or near-optimal solutions more effectively than traditional fixed-strategy methods. The adaptive 
version of GAS necessitates a reevaluation of key lengths, security protocols, and timelines in 
symmetric encryption to ensure quantum resistance. Another example of the threats posed by 
combining quantum and AI/ML capabilities is the quantum accelerated Harrow-Hassidim-Lloyd 
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(HHL) Algorithm for Linear Equations [4] and its threat against lattice-based encryption [5, 6, 7]. The 
HHL algorithm presents a significant advancement in quantum computing. Its ability to efficiently 
solve systems of linear equations is central to many computational problems. HHL has potentially 
significant implications for cryptography, particularly in breaking encryption systems, including 
lattice-based encryption, through hybrid quantum-classical computing approaches. The ability to 
break current cryptographic systems puts national security at risk, potentially exposing state secrets, 
weakening military communications, and undermining intelligence operations. Combined 
technologies, techniques, and methods of Quantum-Classical Computing, AI/ML, and DL's ability to 
solve problems that form the basis of current cryptographic systems endangers digital information's 
confidentiality, integrity, and authenticity. This imminent threat necessitates a proactive and 
coordinated approach to developing and implementing quantum-resistant cryptographic solutions. 

 
Overview of HQCC Systems and Quantum-Accelerated AI/ML and DL: 

Figure 1. above illustrates the high-level interfaces of HQCC and the relationships of quantum-
accelerated AI/ML and DL. ML and DL are subsets of AI, and DL is a subset of ML. 

2. Background 

The development of quantum algorithms like Shor's algorithm (for factoring integers) and 
Grover's algorithm (for database searching) in the 1990s demonstrated the potential of quantum 
computing to revolutionize fields like cryptanalysis. Parallel to quantum computing, the late 20th 
and early 21st centuries saw rapid advancements in AI, ML, and Deep Learning, driven by increased 
computational power and data availability. HQCC emerged as a practical way to leverage the 
strengths of both quantum and classical computing. Hybrid systems use quantum computers to 
perform specific tasks (like complex calculations) and classical computers for tasks like data 
input/output and overall control. The concept of QAI involves applying quantum computing to 
enhance AI algorithms, especially in handling complex, high-dimensional data sets and optimization 
problems. QML exploits quantum computing's ability to perform specific calculations more 
efficiently than classical computers. Improvements include speedups in linear algebra, which is 
fundamental to many lattice-based algorithms. QDL involves training artificial neural networks on 
large data sets. Quantum acceleration could significantly reduce training times and enhance the 
ability to model complex patterns. 

In summary, the amalgamation of quantum and classical computing and advancements in QAI, 
QML, and QDL are opening new frontiers in cryptographic security and cryptanalysis. While these 
technologies promise to strengthen encryption against classical attacks, they also introduce 
sophisticated new methods for attacking cryptographic systems. The field is thus in a state of rapid 
evolution, with significant implications for data security in a future quantum computing era. 
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HQCC and Quantum-Accelerated AI/ML Synergies: 

The convergence of quantum computing and quantum-accelerated AI/ML capabilities poses a 
substantial and evolving threat to encryption, jeopardizing the security of our digital world. Here's a 
breakdown of the significant threats: 

1. Cryptanalysis Breakthroughs: 
• Advanced Algorithm Vulnerabilities: Quantum-accelerated AI/ML could identify subtle 

weaknesses in even complex encryption algorithms, exploiting previously undetected 
mathematical flaws or implementation issues. 

• Deeper Pattern Recognition: Analyzing intricate correlations empowers QAI/QML models 
to discover hidden patterns and relationships in massive datasets and can be used to 
determine vulnerabilities in cryptographic algorithms. AI systems might identify 
previously unknown weaknesses in the algorithms by analyzing large datasets of 
encrypted and decrypted messages. 

2. Speeding Up Brute-Force Attacks: 

• Quantum Grover with AI Boost: Grover's algorithm for searching databases can be 
enhanced with AI-powered optimization techniques, drastically reducing the time needed 
to find decryption keys within vast key spaces. Quantum and AI-powered Grover could 
render secure key lengths ineffective. 

• Adaptive Machine Learning Oracles: Oracles in quantum algorithms are being powered 
by AI. These "smart oracles" could dynamically adjust their search strategy based on the 
information gathered, further streamlining key discovery. 

3. Efficient Side-Channel Attack Amplification: 
• Exploiting Leaky Information: Beyond directly attacking the algorithms, quantum-

powered AI/ML could analyze seemingly insignificant leaks like power consumption, 
timing, or electromagnetic radiation from cryptographic devices to uncover secret keys. 

• Advanced Pattern Recognition: Quantum-accelerated AI could identify subtle patterns in 
these leaks, even across vast datasets, enabling attackers to reconstruct and decrypt keys. 

• Quantum-improved optimization can process this information more effectively to deduce 
encryption keys or algorithms. 

4. Bypassing Security Protocols:  
• Many security protocols and mechanisms rely on optimization problems for network 

security (e.g., routing, intrusion detection) and system hardening. 
• Quantum-improved optimization could solve these problems in ways that allow attackers 

to bypass or undermine these security measures. 

5. Evolving Attack Strategies: 
• Adaptive learning attackers can use Quantum-accelerated AI to adapt strategies in real-

time.  
• Potential Adversaries can use collaborative quantum-AI networks to amplify attack 

effectiveness. 

6. Breaking Hash Functions:  
• Cryptographic hash functions, used for everything from password storage to ensuring 

data integrity, often rely on the difficulty of optimization problems. 
• Quantum-improved algorithms could potentially find collisions in hash functions more 

efficiently, undermining their security. 
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7. Compromising Public Key Infrastructure (PKI):  
• PKI, which is fundamental to secure communications on the internet, relies heavily on the 

difficulty of specific optimization problems.  
• Quantum-improved optimization might undermine PKI's foundational algorithms, such 

as RSA, ECC, and AES, compromising secure communications. 

Mitigation Strategies: 

• QAI/QML Resistant PQC: Develop and deploy algorithms resistant to AI/ML quantum-
accelerated attacks. 

• Diversification: Use multiple cryptographic mechanisms for redundancy. 
• Quantum-Safe Key Management: Implement secure key generation, storage, and distribution. 
• Crypto-Agility: Systems must be crypto-agile, allowing for quick adaptation and replacement 

of cryptographic algorithms.   
• Leveraging Quantum Technologies: Quantum Random Number Generation (QRNG): QRNG-

based true random number generators can improve the security of cryptographic keys, making 
them harder to predict or replicate. 

• Continuous Research and Development: Foster ongoing research in QAI/QML PQC and 
countermeasures 

Here's a breakdown of the potential impact of Grover's Adaptive Search (GAS) against 
symmetric encryption like AES: 

Key Points: 

• Grover's algorithm: A quantum algorithm that can significantly speed up brute-force search, 
potentially affecting symmetric encryption. 

• GAS: Combines Grover's algorithm with adaptive techniques to optimize search, potentially 
making it even more efficient for attacking encryption. 

• AES: A widely used symmetric encryption algorithm relies on a large key space for security. 

Potential Impact: 

• Key space reduction: GAS could reduce the effective key space of AES, making it easier to 
crack. 

• Accelerated brute-force attacks: GAS could enable faster attacks on AES-encrypted data, 
potentially compromising security. 

• Adaptive targeting: GAS could adapt its search strategy to focus on more promising key 
regions, increasing its efficiency in finding the correct key. 

Potential Attack Scenario 1: 

1. Quantum computer with GAS: An attacker with a quantum computer capable of running GAS 
could target AES-encrypted data. 

2. Oracle implementation: The attacker must implement an Oracle function that identifies correct 
keys within AES's key space. 

3. Adaptive search: GAS would iteratively search for the correct key, adjusting its search strategy 
based on obtained information. 

4. Key discovery: If successful, GAS could find the correct key, allowing decryption of the AES-
encrypted data faster than Grover's equation alone. 

Mitigation Strategies: 

• Crypto-Agility: Systems must be crypto-agile, allowing for the identification of vulnerabilities 
and quick adaptation and replacement of cryptographic algorithms as vulnerabilities. 
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• Increase key size: Using larger keys can make AES more resistant to GAS attacks. However, we 
must consider practical resources (CPU, Memory, Storage, Timing, Power, etc.) constraints and 
limitations.  

• Post-quantum cryptography: Develop and transition to encryption algorithms designed to be 
secure against quantum-accelerated AI/ML computing attacks. 

• Hybrid approaches: Combine AES with other techniques to enhance security and continue 
researching more quantum-resistant symmetric encryption. 

Conclusion: 

• GAS poses a potential threat to symmetric encryption like AES, but its practical impact 
depends on quantum hardware advancements and the feasibility of oracle implementation. 

• Mitigation strategies can help maintain security in the face of quantum-accelerated AI/ML 
computing threats. 

• Continuous research and development in quantum-resistant AI/ML cryptography are crucial 
for ensuring long-term data protection. 

Quantum-Accelerated Deep Learning SLR: An Overview 

Quantum-Accelerated Deep Learning Supervised Linear Regression (SLR) has opened new 
frontiers in computational capabilities, particularly in data analysis and predictive modeling. 
Quantum-Accelerated Deep Learning, particularly in the context of Supervised Linear Regression 
(SLR), represents a fusion of quantum computing's power with the advanced capabilities of deep 
learning. While promising for many fields, this combination poses significant challenges to 
cryptographic systems. 

Deep Learning and Supervised Linear Regression 

Deep learning utilizes neural networks that mimic the human brain's structure and function, 
capable of learning and making predictions from data. SLR is a statistical method to model the linear 
relationship between a dependent variable and one or more independent variables. The equation can 
represent the basic form of:  𝒚 = 𝜷𝟎 + 𝜷𝟏𝒙 + 𝝐𝟏 [8] 

Where 𝒚 is the dependent variable, 𝒙 is the independent variable, 𝜷𝟎 and 𝜷𝟏 are coefficients, and ϵ is the error term.   

Quantum-Accelerated Deep Learning SLR 

1. Quantum Acceleration: Quantum computing accelerates the process of SLR in deep learning 
by performing complex matrix operations and vector calculations much more efficiently than 
classical computers. 

2. Quantum Algorithms for SLR: Quantum algorithms, such as the Harrow-Hassidim-Lloyd 
(HHL) algorithm, speed up linear algebra calculations integral to SLR. The HHL algorithm is 
particularly adept at solving systems of linear equations, a critical component in SLR models. 

3. Quantum Machine Learning Models: Quantum-accelerated deep learning involves the 
development of quantum versions of neural networks, where quantum algorithms are used to 
optimize weights and biases in the learning process. 

Quantum-Accelerated Deep Learning (QADL) in Action: 

Quantum algorithms like Shor's method for factoring rely on oracles that perform specific 
operations on the factored numbers. Designing efficient oracles is crucial for algorithm performance. 
Quantum-enabled machine learning-assisted oracle design could train deep learning models to 
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identify the most efficient oracle functions for specific factorization problems, significantly speeding 
up the algorithm [9, 10, 11]. 

Consider a scenario where QADL is used to attack a public-key cryptosystem like RSA. Here's a 
simplified breakdown: 

1. Data Acquisition: Attackers collect side-channel data (e.g., power traces) during encryption. 
2. Quantum Preprocessing: The data is preprocessed and filtered using classical techniques to 

prepare it for quantum computation. 
3. Quantum Circuit Training: A deep learning model trained on a quantum computer learns to 

identify patterns in the preprocessed data that reveal information about the private key. 
4. Classical Postprocessing: The results from the quantum circuit are analyzed using classical 

algorithms to extract the private key. 

Potential Attack Scenario 2: 

Consider a malicious actor accessing a QADL-powered system targeting a critical infrastructure 
protected by RSA encryption. They could: 

1. Train a QADL model on known factorizations and RSA leaks to improve its ability to identify 
patterns and weaknesses. 

2. Analyze side-channel data collected from the RSA implementation, such as power 
consumption during signing or decryption operations. 

3. Use QADL to infer partial factors or statistically predict the private key based on the side-
channel leaks and the trained model. 

4. Employ Shor's algorithm with QADL-optimized oracles to efficiently factor the complete RSA 
key based on the discovered partial factors and predicted key components. 

With the private key compromised, the attacker could decrypt sensitive communications, 
impersonate legitimate users, and tamper with data transmissions, causing significant damage to the 
protected infrastructure. 

Mitigation Strategies: 

• Post-Quantum Cryptography: Transition to encryption algorithms demonstrably AI/ML 
resistant to quantum attacks (PQC). 

• Diversification: Utilize multiple cryptographic mechanisms with varying susceptibility to 
attack vectors. 

• Side-Channel Countermeasures: Implement rigorous hardware and software protections to 
minimize leaks and hinder QADL analysis. 

• Continuous Research and Development: Explore advanced PQC algorithms and 
countermeasures against evolving QADL-based attacks. 

Conclusion: 

• Quantum-accelerated deep learning introduces new challenges to encryption security, but its 
precise impact on specific algorithms remains uncertain. 

• Proactive research, mitigation strategies, and a focus on quantum-resistant cryptography are 
crucial for maintaining secure communication and data protection in the quantum era. 

Analyzing the Quantum-Accelerated HHL Algorithm for Linear Equations: Implications and 
Mitigation Strategies in Lattice-Based Cryptography 

Overview of the HHL algorithm. 

Lattice-based encryption is a class of cryptographic systems resistant to attacks by quantum and 
classical computers. However, developing quantum-accelerated algorithms, such as the Harrow-
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Hassidim-Lloyd (HHL) algorithm [12, 13, 14, 15], introduces potential vulnerabilities even in these 
quantum-resistant schemes. The most notable feature of the HHL algorithm is its potential to solve 
specific large systems of linear equations exponentially faster than classical methods. A crucial 
component of the HHL algorithm is the Quantum Fourier Transform (QFT), used for efficient 
eigenvalue estimation of the matrix involved in the linear system. This step is essential for encoding 
the solution of the linear system into the quantum state. The HHL algorithm requires the simulation 
of the Hamiltonian corresponding to the matrix of the linear system. This simulation is a non-trivial 
task in quantum computing, and the efficiency of the HHL algorithm significantly depends on the 
ability to perform this simulation efficiently. Another key element of the HHL algorithm is Quantum 
Phase Estimation (QPE), which is used to estimate the eigenvalues of the matrix. This information is 
then used to perform the necessary operations to find the solution to the linear system. The HHL 
algorithm utilizes techniques like amplitude amplification (a generalization of Grover's algorithm) to 
enhance the probability amplitude of the desired quantum state, making it more likely to be observed 
upon measurement. Unlike classical algorithms that provide explicit numerical solutions, the HHL 
algorithm encodes the solution into a quantum state. Experimental hybrid quantum-classical systems 
would run computations with classical computers and delegate probabilistic computations to a 
quantum processor. Hybrid neural network training aims to use quantum algorithms to optimize the 
neural network's weights [14]. 

The HHL algorithm is a significant advancement in quantum computing, particularly known 
for its potential to solve systems of linear equations much more efficiently than classical algorithms. 
This complexity is remarkable because it shows an exponential speedup in N over classical 
algorithms for some instances, such as solving linear equations [15]. The algorithm has a runtime of     𝑶(𝐥𝐨𝐠(𝑵)) 
where N is the number of variables in the linear system. HHL's algorithm offers an exponential 
speedup over the fastest classical algorithm, which has a runtime of 𝑶(𝑵𝟑) 

Here's a breakdown of the potential impact of the quantum-accelerated HHL algorithm 
against lattice-based encryption: 

Key Concepts: 

• Lattice-based encryption: A family of encryption algorithms that rely on the hardness of 
solving some mathematical issues in lattices, considered resistant to quantum and classical 
attacks. 

• HHL algorithm: A quantum algorithm that can efficiently solve linear systems of equations, 
potentially threatening lattice-based encryption schemes. 

Potential Impact: 

• Solving lattice problems: The HHL algorithm, if successfully implemented on a quantum 
computer, could efficiently solve lattice problems currently considered computationally 
intractable for quantum and classical computers. 

• Breaking encryption schemes: This could potentially break lattice-based encryption schemes, 
including LWE, Ring-LWE, and MLWE, compromising the confidentiality and integrity of 
protected data. 

HHL Algorithm Overview: 

Attack Scenario: 

1. Quantum computer with HHL: An attacker with access to a quantum computer capable of 
running HHL could target lattice-based encrypted data. 
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2. Lattice problem encoding: The attacker would encode the lattice problem associated with the 
encryption scheme into a quantum state. 

3. HHL execution: The HHL algorithm would then be applied to solve this linear system, 
potentially revealing the secret key or enabling decryption. 

Here's a summary of possible attacks on lattice-based encryption using a quantum-accelerated 
HHL algorithm: 

1. Solving Linear Equations Efficiently:  

• The HHL algorithm solves linear systems of equations exponentially faster than classical 
algorithms.  

• Lattice-based cryptographic schemes, at their core, rely on the hardness of solving certain 
types of lattice problems, which can be reduced to solving systems of linear equations.  

• A quantum-accelerated HHL algorithm could, in theory, solve these equations more 
efficiently, potentially compromising the security of lattice-based encryption systems. 

2. Approximate Shortest Vector Problem (SVP) Solutions:  

• One fundamental problem underpinning lattice-based cryptography is the SVP.  
• A quantum-powered HHL algorithm could be adapted to find approximate solutions to 

the linear equations related to SVP, thus undermining the hardness assumption that 
secures these cryptographic systems. 

3. Decoding Lattice Codes:  

• Lattice-based encryption often involves lattice codes for error correction and decryption.  
• The HHL algorithm, enhanced with quantum acceleration, could decode these lattice 

codes more efficiently than classical algorithms, allowing an attacker to decrypt messages 
without possessing the private key. 

4. Reducing Lattice Basis:  

• The security of lattice-based cryptography also depends on the difficulty of finding a 
short, nearly orthogonal basis for a lattice (known as the Lattice Basis Reduction problem).  

• Quantum-accelerated HHL algorithms could aid in this reduction process, enabling 
attackers to transform complex lattice structures into more manageable forms that are 
easier to analyze and attack. 

5. Attacking Learning with Errors (LWE), Ring-Learning with Errors (RLWE), and Related 
Problems:  
• Many lattice-based cryptographic systems, like those based on the Learning with Errors 

(LWE) problem, involve solving linear algebraic equations with noise.  
• HHL is primarily designed for solving systems of linear equations without noise. 

Advancements in quantum algorithms could extend its capabilities to noisy systems, 
directly impacting the security of LWE-based cryptosystems. 

6. Quantum Resource Optimization:  

• Applying the HHL algorithm to attack lattice-based encryption would require significant 
quantum resources, including many qubits and error correction techniques.  

• However, ongoing advancements in quantum computing could make these resource 
requirements more feasible, increasing the practical risk of such attacks. 

7. Hybrid Quantum-Classical Attacks:  
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• By combining the strengths of quantum-accelerated HHL algorithms with classical 
computing techniques, attackers might develop hybrid methods to target specific 
weaknesses in lattice-based cryptosystems.  

• Such hybrid approaches could be more effective and resource-efficient than purely 
quantum or classical methods. 

Summary:  

Quantum Algorithmic Improvements: The field of quantum computing, AI/ML, is rapidly 
evolving, and improvements in quantum algorithms, AI/ML, including variants or extensions of the 
HHL algorithm, could present unforeseen challenges to lattice-based encryption. For example, new 
quantum algorithms might be more adept at handling noisy linear equations central to lattice-based 
cryptographic security. In summary, while lattice-based encryption is a promising candidate for post-
quantum cryptography, developing quantum-accelerated algorithms like HHL presents potential 
risks. These quantum algorithms could undermine the mathematical assumptions underpinning the 
security of lattice-based systems, necessitating ongoing research into advanced cryptographic 
techniques and quantum-resistant encryption methodologies. Protecting lattice-based encryption 
systems against potential attacks by quantum-accelerated algorithms, such as the HHL algorithm, 
requires a multifaceted approach. Given that lattice-based encryption is one of the primary 
candidates for post-quantum cryptography, ensuring its resilience against quantum attacks is crucial. 

Mitigating Quantum-Accelerated HHL Algorithm Threats in Lattice-Based Cryptography 

Here's a summary of strategies to protect lattice-based encryption against the quantum-
accelerated HHL algorithm: 

1. Complexity and Noise Increase: One way to protect against HHL algorithm attacks is by 
increasing the complexity and noise within the lattice problems. Lattice-based schemes such as 
Learning with Errors (LWE) or Ring-LWE parameters should be designed to make the 
underlying problems more resistant to quantum algorithms. The design will usually require 
larger lattice dimensions and increasing the noise, complicating the quantum algorithm's 
ability to find a solution. However, this countermeasure may impact performance. 

2. Enhanced Problem Hardness: Focusing on lattice problems that are inherently harder for 
quantum algorithms to solve is another approach. For instance, certain lattice problems might 
be less amenable to decomposition into linear systems or may have properties that make 
quantum algorithms like HHL less efficient, such as high-condition numbers or complex 
eigenvalue distributions. 

3. Hybrid Cryptographic Systems: Combining lattice-based encryption with other quantum-
resistant cryptographic techniques can increase security. This hybrid approach can leverage 
the strengths of multiple cryptographic systems, creating a more complex landscape for 
potential quantum attackers to navigate. 

4. Algorithmic Improvements and Adaptations: Continuously improving and adapting lattice-
based algorithms in response to advancements in quantum computing is crucial. This 
improvement includes refining encryption schemes to be more robust against quantum 
algorithms and exploring new lattice constructions less vulnerable to quantum attacks. 

5. Quantum-Safe Parameters: Regularly updating the parameters used in lattice-based schemes 
based on the latest research in quantum computing can help stay ahead of potential quantum 
attacks. This update involves tracking advances in quantum algorithms and hardware and 
adjusting the encryption parameters accordingly. 

6. Leveraging Quantum Technologies: Quantum Random Number Generation (QRNG): QRNG-
based true random number generators can improve the security of cryptographic keys, making 
them harder to predict or replicate. 

7. Post-Quantum Cryptography Standards: Engaging with ongoing efforts to standardize post-
quantum cryptography is essential. Contributing to and adopting standards developed by 
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organizations like the National Institute of Standards and Technology (NIST) ensures that the 
lattice-based encryption schemes are aligned with the latest research and recommendations for 
quantum resistance. 

8. Crypto-Agility: Systems: Systems must be crypto-agile, allowing for quick adaptation and 
replacing cryptographic algorithms.     

9. Theoretical Research and Analysis: Ongoing theoretical research into quantum algorithms and 
lattice-based cryptography can provide early warnings of potential vulnerabilities. This 
research should focus not just on current capabilities but also on projected advancements in 
quantum computing. 

10. Monitoring Quantum Computing Developments: Keeping abreast of developments in 
quantum computing, particularly advancements in algorithms like HHL, is essential for 
anticipating and preempting future threats. This monitoring includes understanding the 
capabilities of current and near-term quantum computers. 

11. Redundancy and Layered Security: Implementing a layered security approach that does not 
rely solely on lattice-based encryption can provide additional safeguards. This layered 
approach could involve using multiple encryption methods or adding redundant layers of 
security to critical systems. 

12. Community Collaboration and Knowledge Sharing: Collaboration within the cryptographic 
community is vital. Sharing knowledge, research findings and strategies for protecting against 
quantum attacks can lead to more robust and well-rounded defensive techniques. 

3. Summary 

This research paper delves into the critical intersection of advancements in hybrid quantum-
classical computing (HQCC), AI/ML, and DL and their potential impact on the timeline for 
transitioning to post-quantum cryptography (PQC). It raises concerns about the effectiveness of 
current encryption and PQC algorithms against sophisticated AI-driven cryptanalysis empowered 
by HQCC capabilities. 

Key Points: 

• HQCC Threat to PQC: The paper highlights the growing capabilities of HQCC in tackling 
complex mathematical problems underlying current encryption and PQC algorithms. Rapid 
and unexpected advances raise concerns about potential vulnerabilities in existing PQC 
candidates, potentially jeopardizing their long-term security. 

• AI-Driven Cryptanalysis: Integrating AI algorithms within HQCC frameworks amplifies 
current encryption and PQC threats. AI can optimize search algorithms and exploit subtle 
weaknesses in cryptography designs, potentially accelerating cryptanalysis efforts. 

• Impact on PQC Migration Timelines: The paper argues that the evolving threat landscape 
necessitates a reevaluation of current PQC migration timelines. Early adoption of PQC might 
be necessary to avoid potential vulnerabilities exposed by HQCC advancements. 

• Proactive Measures and Further Research: The paper emphasizes the need for proactive 
measures, including: 

• Accelerated PQC standardization: Finalizing robust and diverse PQC standards that can 
withstand classical and quantum cryptanalysis. 

• Continuous monitoring of HQCC developments: Establishing mechanisms to track 
advancements in HQCC and their potential impact on PQC security. 

• Investment in further research: Fostering research into novel post-quantum cryptographic 
primitives and defenses against evolving cryptanalytic techniques. 

4. Conclusion: 

This paper paints a concerning picture of the potential challenges HQCC-powered AI 
cryptanalysis poses to classical encryption and PQC migration timelines. It calls for a proactive and 
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multifaceted approach, encompassing accelerated standardization of AI/ML resistant PQC, vigilant 
monitoring, and continuous research investments, to ensure the future of secure communication in a 
quantum world. 

5. Further Considerations: 

• The specific timeline for HQCC achieving cryptanalytic relevance against classical 
cryptography remains uncertain. Continued research and development in both PQC and 
HQCC will be crucial in determining the actual risk landscape. 

• The paper primarily focuses on classical cryptography and PQC in the context of 
communication security. However, the implications of HQCC for other areas relying on 
cryptography, such as blockchain and digital signatures, warrant further investigation. 

• Collaboration between cryptographic researchers, quantum computing experts, and 
policymakers is essential for developing effective strategies to mitigate the risks posed by 
HQCC and ensure a smooth transition to a quantum-resistant cryptographic infrastructure. 

By staying informed about the evolving landscape of cryptology and proactively addressing 
emerging threats, we can ensure the continued effectiveness of cryptographic safeguards in the face 
of classical and quantum computational challenges. 
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Abbreviations 

ACM Association for Computing Machinery 
AES Advance Encryption Standard 
AI Artificial Intelligence 
AI/ML Artificial Intelligence/Machine Learning   
CPU Central Processing Unit 
DL Deep Learning 
ECC Elliptic Curve Cryptography 
GAS Grover's Adaptive Search 
HHL Harrow-Hassidim-Lloyd 
HQCC Hybrid Quantum-Classical Computing 
IEEE Institute for Electrical and Electronic Engineers 
IOTJ IEEE Internet of Things Journal 
LWE Learning with Errors 
ML Machine Learning 
MLWE Module-Learning with Errors 
NIST National Institute for Standards and Technology 
PKI Public-Key Infrastructure 
PQC Post Quantum Cryptography 
QADL Quantum-Accelerated Deep Learning 
QAI Quantum-Accelerated Artificial Intelligence 
QML Quantum Machine Learning 
QDL Quantum Deep Learning 
QFT Quantum Fourier Transform 
QML Quantum Machine Learning 
QPE Quantum Phase Estimation 
QRNG Quantum Random Number Generator 
RLWE Ring-Learning with Errors 
RSA Rivest, Shamir, and Adleman 
SIGPLAN Special Interest Group on Programming Languages of the ACM 
SLR Supervised Linear Regression 
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